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Introduction 

Most advances in science amount to a break 
with ‘common sense’. It was not long ago that 
the doctrine of analytical chemistry demanded 
that one single selective signal (variable) was 
measured with the utmost precision to provide 
the desired information. Chemometrics tells us 
that it is often better to measure many non- 
selective signals, and then combine them in a 
multivariate model [ 11. 

We are often confronted with several vari- 
ables, for instance, when comparing the chem- 
ical profiles of a group of drug treated animals 
with a control group. The obvious, ‘common 
sense’ approach is to scrutinize the variables 
one at a time; COST analysis (Consider One 
Separate variable at a Time). Chemometrics 
says the opposite; analyse everything together, 
multivariately [l-3]. 

A central question in chemistry is how to 
best and most efficiently make experiments. 
Consider as an example the optimization of a 
chromatographic analysis. Several factors 
affect the results and may be varied in the 
optimization, e.g. type and amount of extrac- 
tion solvent, extraction time and temperature, 
pH and type of mobile phase, and type of 
stationary phase. The “common sense” way of 
making experiments to reach an optimal 
chromatographic analysis is still to Change 
One Separate factor at a Time (COST design). 
This is also the way most experimental chem- 
istry is taught and practiced. 

Fisher showed the deficiencies with this 
strategy in 1925. Thereafter Fisher, followed 

by Yule, Box, Youden, Hunter, Hunter, and 
numerous others have shown that laying out 
series of experiments where all factors are 
changed together, so called statistical exper- 
imental design (SED), gives much more infor- 
mation and reaches the optimum conditions in 
fewer experiments than does COST exper- 
imentation. For SED overviews, applications, 
and further references, see refs 4 and 5. 

In retrospect, these steps of chemometrics, 
the recognition of the information inherent in 
multivariate data, and the necessity to not 
change one factor at a time in experimental 
investigations, may seem obvious, and even 
trivial. Accepting these ideas of chemometrics, 
we can now look forward at what can and 
should be done, to better solve practical 
chemical and biological problems using chem- 
ical-biological knowledge coupled with 
mathematics and statistics, and how we can use 
emerging scientific and technical developments 
for these purposes. 

What is Chemometrics? 

Chemometrics is greatly motivated by 
practical problem solving, utilizing exper- 
imental data efficiently and economically. A 
review and history of chemometrics is given by 
Geladi and Esbensen [6, 71. Pertinent text 
books and reviews have been published [l-12]. 

Basically, chemometrics has two essential 
lines of development; that of data analysis, 
utilizing the inherent information in chemical 
data in the best way, and that of experimental 
design, that of planning and performing exper- 
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iments in a way that the resulting data contain 
the maximum information about stated 
questions. These two lines of chemometrics are 
not separated, but intertwined. 

Why multivariate modelling and analysis? 
Chemometrics started around 1970 with the 

insight that chemical instruments were begin- 
ning to produce much more data than any 
existing chemical data analysis reasonably 
could cope with, and that the unutilized infor- 
mation in these data masses may be sub- 
stantial. 

Today the motivation for chemometrics 
remains very much the same, i.e. how to make 
intelligent use of the masses of data produced 
by chemical analysis and experimentation. The 
size of the data sets has grown, today we gather 
thousands of variables, second and third order 
data arrays, etc. However, our understanding 
of the situation has also improved, and we 
today have appropriate data analytical 
methodology for most routine situations in 
chemical, pharmaceutical and biomedical 
analysis. 

There are two basic reasons for making a 
multivariate analysis instead of analysing the 
variables one at a time: 

(1) The multivariate analysis gives an over- 
view of all the data allowing an overall judge- 
ment and an overall evaluation of the signifi- 
cance of differences between groups (e.g. 
treated and control) and correlations (e.g. 
between a set of symptoms and chemical 

profiles). 
Statistically, it is extremely difficult to judge 

the significance of a large number of differ- 
ences between group averages or a large 
number of correlations in scatter plots. We 
know fairly well how to evaluate the signifi- 
cance of one difference, and one correlation. 
Statistics teaches us to use t-tests and the like 
so that the risk to accept a “randon result” as 
“real” is less than, say, 5%. With two differ- 
ences or two correlations, the risk to judge at 
least one “random result” as real is about 10%) 
if the significance of each of the two is 
evaluated separately. With K correlations or 
group differences, this risk (u) is: 

U = 1 - (0.95)K. 

The value of u exceeds 0.4 when K > 10 and 
exceeds 0.8 when K > 30. Only by making a 
single analysis of all the data - multivariate 

analysis - can one get this risk for spurious 
results under control. 

(2) It is clear that information about compli- 
cated samples or processes is not associated 
with single variables. Such concepts as inter- 
actions, synergisms, joint influence of several 
factors on a biological receptor, etc., can be 
seen only by analysing all relevant variables 
together by multivariate analysis. And when all 
data are analysed together, one obtains an 
averaging effect, so that the systematic infor- 
mation is enhanced, and noise is decreased. 
This is the same principle as is used in the 
signal averaging in NMR, FT-IR, etc. 

The recognition that multivariate data 
potentially contain much more information 
than few-variate has provided the incentive to 
design chemical analytical methods to give 
many signals instead of one. This, in turn, has 
necessitated a development of sampling and 
experimental design to facilitate the selection 
of experimental/measuring conditions with 
maximum information content; multivariate 
design [9-121. 

One interesting and important property of 
multivariate data is their ability to capture 
diffuse qualities and properties such as bio- 
logical activity, taste, and smell, much better 
than these can be quantified in a single 
measurement. For the investigation of bio- 
logical systems this is essential, and indeed 
large numbers of response variables are rout- 
inely measured everywhere in drug research. 

Geometric Interpretation of Chemometrics 

Geometry provides a straightforward way to 
understand experimentation and data analysis 
in terms of spaces and configurations in these 
spaces such as points, lines, planes, and curved 
surfaces. 

Multivariate analysis 
The principles of multivariate analysis are 

simple. Data have been measured on a set of 
objects (object = sample, compound, rat, 
etc.). On each object, the values of K variables 
have been measured, e.g. concentrations of 
various compounds in the blood and urine of 
each rat, or physico-chemical properties of 
each compound, etc. 

These data are represented as points in a 
multivariate space (M-space) with as many 
axes as there are variables (Fig. 1). One then 
constructs windows into this space by means of 
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Figure 1 
Multivariate space with three variables, some data, and a 
plane approximating the data. A window into the space, 
allows us to see trends, groups, outliers, etc. 

projections on planes or hyper-planes. The 
information in the data is seen as “patterns” in 
these windows, e.g. trends, separated groups 
and outliers. 

Multivariate analysis methods such as prin- 
cipal components analysis (PCA), and factor 
analysis (FA) usually is concerned with devel- 
oping models in M-space, such as lines and 
planes (Fig. 1). The projection of the points 
down on a plane can then be displayed on a 
computer screen or shown as a graph, allowing 
the recognition of “patterns” in the data. The 
direction of the projection plane gives infor- 
mation on which variables are important and 
which are not, and how the important variables 
combine to separate groups of objects, to 
define the trends among objects over time, etc. 

In the quantitative analysis of multivariate 
data, it is often practical to use two spaces, one 
for the factors and other predictor variables 
(X), and one for the response data (Y). 
Methods, such as PLS (partial least squares 
projection to latent structures) [l, 8, 11-141 
and multiple regression (MR), develop models 
that connect the two spaces X and Y. All these 
models can be seen as lines and planes in the 
X- and Y-spaces with an interpretation very 
similar to that of PCA and FA. 

Statistical experimental design (SED) 
When we are making experiments, we 

manipulate a set of factors. Take, for example, 
a chromatographic separation where we can 
vary just the two factors pH and temperature 
(T). One experiment is now a point in the 
factor space (Fig. 2). The experimentation is 

Figure 2 

One experiment 
is a point 

Two-space of two factors (pH and T). Each experiment is a 
point in this space. 

confined to a region in this space, defined by 
the lower and upper limits of each factor. A 
measured response (y), say the distance be- 
tween two important chromatographic peaks, 
can now be represented as a third axis, giving a 
three-dimensional space. So, for each setting 
of the two factors pH and T we can make an 
experiment, giving a value of the separation, y 
(Fig. 3). Using a simple model (see below), we 
can finally connect the experiments by a 
smooth surface, allowing predictions to be 
made as interpolations and mild extrapol- 
ations. 

With this geometrical interpretation of 
experiments (factor space, X) and data 
(measurement space, X or Y), we can think of 
the task of an experimenter as that of exploring 
an X-space (factor space) as well as possible 
with as few experiments (runs) as possible with 
the purpose to get as good a map as possible of 

I 1 

Figure 3 
Two factors (x) and one response (y) form a three- 
dimensional space or a 2-space (X) + a l-space (I’). 
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the relation between the factor space X and the 
response space Y. It is easy to see that the 
COST design leads to a poor map of this space 
and its relation to the Y-space, and also that 
COST designs lead to unnecessarily many 
runs. See also the discussion by Kettaneh- 
Wold [15] in this volume. 

With SED [4, 51, a set of experiments, a 
plan, is laid out (see, e.g. Fig. 4), which (a) 
allows the precise estimation of the parameter 
values of the model, and (b) gives good 
predictions in the whole experimental region, 
but still (c) uses a fairly small number of 
experimental runs. 
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Figure 4 
A statistical design (central composite) in two factors. ‘This 
design supports a quadratic polynomial model: 

y = c,, + c,x, + czxz + C,,X12 + czzxz2 + c,*x,xz + E. 

Modelling 

Underlying all design and data analysis there 
is the concept of models. This is the necessary 
consequence of the theoretical developments 
of theoretical physics and chemistry in the 
beginning of this century by Planck, Bohr, 
Schrbdinger, Heisenberg, Dirac, and others, 
and not the least the mathematical-philosoph- 
ical results of Godel. Basically, we are forced 
to realize that complete knowledge about 
anything is impossible to obtain, even in 
principle, and all we can do is to develop 
approximate simplified mathematical approxi- 
mations of the complicated reality, i.e. models. 

Nevertheless, the use of mathematical 
models allows us to connect the results of one 
experiment with those of another, to find 
favourable directions in the experimental 
space, etc., in short, to learn from experiments 
[4]. The models used in chemometrics usually 
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are ‘semi-empirical’, such as polynomials 
(lines, planes, quadratic surfaces). This is 
because, except in very simple cases, there are 
no adequate fundamental models based on first 
principles. In cases where good fundamental 
models of an investigated system or process 
exists, they can, of course, be used for the data 
analysis. This, provided that the fundamental 
models are not ‘ill posed’ (ill conditioned) 

with numerical and statistical deficiencies [ 161. 
Using the models, the data are separated 

into two parts; the systematic part ‘explained’ 
by the model, and the ‘noise’, the remaining 
unmodelled part of the data. Initially the 
acceptance of ‘noise’ is psychologically diffi- 
cult, but any experiments and measurements 
have an inherent variability, 

Data (Y) = Model[factor values (X), 
parameters (B)] + Noise. 

With the systematic part of the model, we 
can now predict the behaviour of our system 
for new values of the X-variables. When the X- 
variables are factors such as pH, T, and so on, 
this allows us to manipulate the system to 
achieve desired goals as well as possible, 
‘optimizing’ the system. The noise part is 
modeled by a statistical distribution such as the 
normal distribution. This allows us to get an 
idea of the uncertainty - confidence intervals 
- of parameter values (B) and model pre- 
dictions ( fi. 

When the X-variables are signals, and Y 
measures concentrations or other system prop- 
erties, we can predict Y from the values of X 
for new samples; we have a “multi-variate 
standard curve” [ 11. 

Data Analysis and Validation 

When data are related to a model, this 
usually corresponds to the estimation of the 
values of a number of parameters in the model. 
This is done so that the deviations between the 
model and the data become small using, for 
instance, the criterion of least squares. This 
model fitting balances on a fine line between 
on the one hand overfit - producing partly 
spurious correlations - and on the other hand 
underfit - not utilizing all the information in 
the data. 

The risk for overfit arises because with 
sufficient free parameters, a model can be 
made to fit any data exactly if careful pre- 
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cautions are not taken, and if a correct model 
fitting is not done. We note that many models 
used in chemometrics, such as PLS, often have 
many more apparent parameters than data, but 
additional constraints - with PLS the model- 
ling of the X-data - keeps the risk for overfit 
under control [l, 111. 

To avoid the pitfalls of overfit, spurious 
results, and the consequential random pre- 
dictions of new events and observations, some 
kind of model validation is essential. The best 
validation is always a number of new and 
representative observations that were not part 
of the model fitting. The X-values of these new 
observations should, when inserted in the 
model, predict the corresponding Y-values 
much better than by chance. 

Often, however, new observations are not 
immediately available. One can then still use a 
type of validation that simulates the prediction 
of new events, so called cross-validation [l, 
171. This is based on the deletion of a few 
observations from the data, developing the 
model on the basis of the remaining data, and 
then predicting the deleted data from their X- 
values and the developed model. This is 
repeated a number of times, until each obser- 
vation has been deleted once, and once only. 
The resulting measure of predictive power, 
PRESS (predictive residual sum of squares) 
provides a good measure of how well the 
model actually will predict new observations. 

Naturally, cross-validation (and the closely 
related boot-strapping) can be misused too, 
giving a PRESS that apparently is very good 
even when the actual predictive power of the 
model is zero. This is accomplished by using 
PRESS as the optimization criterion, starting 
with a large number of variables (and para- 
meters) with stepwise selection of the variables 
that make PRESS look the best. Then, finally, 
one forgets how many variables that actually 
were involved, and pretends that only a mild 
variable selection has been performed. 

Apart from this obvious misuse, however, 
cross-validation works very well, and is used 
extensively in chemometrics for initial model 
validation. Martens [l] and Wold [17] give 
further details on the method. 

Another safety belt, preventing much misuse 
of models, is to always display data and results 
as plots and graphs. Man is very good at 
judging patterns (and lack of patterns) in 
graphs, and as a rule, one should never believe 
results of modelling and data analysis if they 

are not supported by pertinent plots. With the 
graphical abilities of today’s computers and 
software, there is no excuse for not showing 
plots! 

Chemometrics, Why and What? 

So, to the first question, ‘why and what is 
chemometrics’, we may answer as follows: 

Why? 
Because statistics and mathematics teach us 

that there are better ways to use the infor- 
mation in the data than just looking at them, 
plotting variables one at a time or pairwise. 
The two worst effects of this “traditional” 
approach are (i) an increased risk of spurious 
correlations and other results, and (ii) the real 
information in the data is seen less clearly. 

Using appropriate modelling and analysis, 
the information in the data can be extracted in 
an optimal way, while keeping the risk for 
spurious results under control. This allows us 
to make the best interpretation, decisions, 
optimization, etc. 

Analytical instruments such as HPLC, 
NMR, GC-MS, produce more and more data 
for a given chemical or biological sample. 
Chemometrics provides tools to make good use 
of these data, enabling the scientists to make 
sense of the otherwise overwhelming masses of 
data flooding the laboratory of today. 

Second; economics, competition, ethics and 
regulations put strong pressure on reducing the 
number of experiments, in particular with 
animals and humans. Only with a combination 
of statistical experimental design and good 
multivariate data analysis can we solve our 
problems within the constraints stated by 
economics and society. 

What? 
Basically, the principles of chemometrics are 

simple: 
(1) Use quantitative (mathematical) models 

to connect, rationalize, and interpret the 
chemical/biological data. Never forget the dif- 
ference between model and truth! 

(2) Include variability (E) in the model, and 
handle it by means of distributions. 

(3) When changing conditions, making 
experiments, optimizing etc., do not change 
one factor at a time, keeping the others fixed. 
Rather, use statistical designs, planning sets of 
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experiments, usually with N = 10-20, where 
all factors are varied together. 

(4) Analyse all data together with an appro- 
priate model. With the type of data measured 
in laboratories today, this usually involves 
multivariate modelling and analysis, with PCA, 
PLS, and other projection methods. Always 
use some kind of validation (at least cross- 
validation) to judge the predictive power of the 
model. Show the results as plots. 

In practice, this is, of course, more difficult 
than it sounds, but with increasing experience, 
increasing understanding, better software, 
better graphics, and better computers, things 
are improving. 

Thus chemometrics makes modelling, exper- 

imental design, and data analysis simpler and 
more rational, allowing the scientist to concen- 
trate on the really difficult part of research and 
development, to translate diffuse objectives 
into quantitative response measurements with- 
out losing the essence of the problem, to think 
of all factors that may influence the investi- 
gated system, to express them in a practical 
and pertinent way, to make accurate measure- 
ments and good experiments, and to interpret 
the results of the data analysis, i.e. bring the 
resulting coefficients back to relate to the 
original objective. This will never be easy or 
automatic, because this is the essence of 
research and development. 

The Future of Chemometrics 

Chemometrics is relatively new and still has 
a number of areas that must be much better 
developed before more speculative futuristic 
visions are pursued. In particular, we still lack 
the following: 

(1) Good and easily applied methodology 
for dynamic systems and processes. These 
systems show particular data analytical prob- 
lems in that the consecutive observations are 
not statistically independent. Ordinary multi- 
variate methods such as PCA and PLS must be 
modified if they shall be useful in this context. 
Also, these applications produce extremely 
large masses of data, often at intermittent 
intervals, making present methods of analysis 
and graphical representation insufficient. 

Most methods of experimental design are 
also based on the assumption of independence 
between observations. For process optimiz- 
ation, better ways of experimentation than 

changing a few variables at a time are still not 
well developed. 

(2) Appropriate graphic representation of 
large data sets and results. We do have 
adequate graphics for up to four or five X- 
variables and three or four Y-variables in 
regression and PLS modelling, and for up to 
three or four latent variables (components) in 
PC and PLS-modelling. However, the increas- 
ing size of the data sets in chemical and 
biological R&D makes today’s principles for 
graphical representation obsolete. Possibly 
multi-layer graphics where a data set can be 
looked at with different levels of ‘resolution’, 
and zooming between these levels, is a possible 
direction to go. 

(3) Tools for using results from multivariate 
analysis for the optimization of systems and 
processes. When we think about experimen- 
tation and optimization, we have a strong 
tendency to think of factors as independent. 
Hence, all our tools for the experimental 
manipulation of processes are based on these 
independence assumptions. However, most 
variables in complicated systems processes are 
correlated, and it is not clear how to go from a 
good multivariate model back to the actual 
change of the process conditions to improve 
the ‘quality and performance’ of the process 
output. 

(4) Good connections between chemo- 
metric models and fundamental chemical 
theory. There is a clear gap of communications 
between chemometrics and much of the rest of 
chemistry. Parts of analytical chemistry pro- 
vide the exception. One reason for this gap is 
the different types of models used in chemo- 
metrics and in physical chemistry, inorganic 
chemistry, organic chemistry, and biochem- 
istry. The models of the latter branches of 
chemistry are often, at least apparently, based 
on fundamental principles, which makes them 
easier to interpret, and generalize. At the same 
time, it is clear that they are often unsuitable 
for analysing data and for making quantitative 
predictions. This is because they are often ill 
conditioned with strong correlations between 
parameters, rarely multivariate, and usually 
not flexible enough to model data in areas 
where we know less, i.e. at the frontiers of 
research, and in the investigation and optimiz- 
ation of complicated systems. 

It is possible to regularize any type of 
‘fundamental’ model to make it numerically 
and statistically better conditioned, and then 
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extend the model by serial expansions in the 
resulting metric, and finally make the model 
multivariate. This would perhaps provide a 
bridge between chemometrics and chemistry, 
models that retain the shape of the ‘funda- 
mental’ models, but that are more suitable for 
serious use with experimental data. 

(5) Good general textbooks, courses, aca- 
demic programs, software, etc. Chemometrics, 
still being in its infancy, has still long to go 
before it is an established chemical discipline. 
So far no general chemometrics textbook has 
been written that is based on the philosophy of 
modelling, and at the same time tries to start 
from chemical problems showing what chemo- 
metrics can do about it. Reference 1 is a 
notable exception, but concerns only one area 
of applications, albeit an important one. 

The same goes for academic programs, 
courses, etc., all of which take time to develop, 
and also a much wider basis than we presently 
have. One area that moves faster than others is 
software development; we now start to have 
software corresponding to the state of art in 
multivariate analysis and experimental design. 
And to incorporate the developments of 
tomorrow into these packages should not be 
too difficult. 

The real future: can anything be said about it 
except that we do not know anything about it 
until we see it? We can only express what we 
wish will happen and what we wish will not. 

Undesirable developments 
Chemometrics has so far been motivated 

very much by practice, and we hope this to 
continue. There is a risk, however, that chemo- 
metrics becomes more theoretical, further 
removed from chemical experimentation, 
analogous to the sad development of psycho- 
metrics and biometrics, and much of techno- 
metrics and econometrics. This will happen if 
chemometrics is separated from chemistry and 
put in separate departments, or organized as 
part of statistics or computer science depart- 
ments. The responsibility that this does not 
happen rests solely with the chemometricians 
themselves; we must not let ourselves be 
impressed by pure mathematical theory with- 
out chemical substance. 

Another undesirable future is connected 
with the present fad of expert systems and 
artificial intelligence. As some see it, com- 
puters will become more and more ‘intelligent’ 
and will take over tasks that we today think of 

as human and creative, even scientific. How- 
ever, as long as chemistry and biology remain 
experimental sciences, the problems investi- 
gated in research and development will always 
have in them a substantially novel part. This 
follows from what was discussed above under 
modelling, that of our knowledge about reality 
as always incomplete and mere approxi- 
mations, more or less crude, of the real 
relationships. 

Therefore we can be reassured that ‘AI’ 
and expert systems will never be able to 
substitute real research or development, only 
the simplest routine tasks where human 
thought, creativity, and emotional input is not 
needed. 

Desirable developments 
We today begin to see chemometrics being 

used to construct analytical instruments that 
give optimally informative data. This interest- 
ing trend will hopefully continue, with chemo- 
metrics and statistical design used to plan the 
measuring and experimentation setup, instead 
of the opposite which unfortunately still re- 
mains the norm. 

If, as we hope, chemometrics continues to be 
coupled to chemical practice, its future is 
strongly coupled to important practical prob- 
lems emerging in the future of chemistry, of 
which we know little. What is clear is that 
experimentation becomes more and more 
expensive, and in pharmaceutical and bio- 
medical research, more and more regulated. 
This provides a stronger motivation for using 
appropriate statistical design and modelling to 
make experimentation optimally efficient. May 
be we will see only designed experimentation 
in the near future. 

At the same time, measurements continue to 
be cheaper and cheaper, which leads to larger 
and larger data sets (with respect to the 
number of variables) being collected in each 
experiment. To utilize the information in these 
data, appropriate multivariate modelling and 
analysis is essential. We can see the emerging 
need of hierarchical models on different levels 
of “data resolution” hooked to appropriate 
graphics, allowing us to simultaneously getting 
an overview and penetrating knowledge of 
complicated systems. 

These developments will allow us new ways 
to question chemical and other databases. 
Today’s search based on questions such as ‘all 
compounds with two double bonds and one 
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amino group’ are all based on linear additive 
(implicit) models. When we start to use our 
present (and future) knowledge of multivariate 
modelling to database construction and re- 
trieval, interesting patterns will emerge. 

Finally, in an interesting futuristic extra- 
polation, Geladi [18] has pointed out the 
possibility of small, cheap, sensor chips hooked 
to a small cheap computer on the same chip 
programmed with multivariate analytical 
modelling, all powered by a photo-electric cell 
(on the same chip). An appropriately con- 
structed chip will be able to analyse its environ- 
ment and display or communicate the results in 
terms of ‘quality diagnostics’. A chip can sit in 
a bottle of wine and tell how good, and mature, 
the wine is. Similar chips can tell us if a loaf of 
bread is still fresh, if a drug has deteriorated, 
and if our feet smell good. 
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